Coronary Anatomy and Left Ventricular Ejection Fraction in Patients With Type 2 Diabetes Admitted for Elective Coronary Angiography

Peter Ammann, Hanspeter Brunner-La Rocca, Thomas Fehr, Thomas Münzer, Markus Sagmeister, Walter Angehrn, and Hans Rickli

Patients with diabetes mellitus (DM) have more severe coronary artery disease and a two- to fourfold higher risk for myocardial infarction and death as compared to patients without DM. In this study, we analyzed coronary anatomy, left ventricular ejection fraction, and cardiac risk factors in patients with DM referred for coronary angiography and compared them with findings in nondiabetic patients. Coronary anatomy was assessed in a total of 6,234 patients and left ventricular ejection fraction in a subset of 4,767 (76.5%) patients. Diabetic patients (n = 641) were older (60.8 ± 9.6 vs. 58.5 ± 10.5 years; P < 0.0001) and had higher rates of hypertension (65% vs. 47%; P < 0.0001). Three-vessel disease (DM 44.7% vs. no DM 25.4%; P < 0.0001) and reduced left ventricular ejection fraction (DM 58.4% ± 15.2 vs. no DM 63.9% ± 13.2; P < 0.0001) were significantly associated with DM. After adjustment for age and other vascular risk factors, the presence of DM was associated with a higher atherosclerotic burden. We conclude that advanced coronary heart disease and left ventricular dysfunction are highly prevalent in diabetic patients, independent of age and other cardiovascular risk factors. Thus, cardiac assessment in diabetic patients should, in addition to optimal diabetic control, involve screening for left ventricular dysfunction.

Key words: diabetes; coronary angiography; left ventricular ejection fraction; sex; atherosclerosis; coronary artery disease

INTRODUCTION

An epidemic increase of patients suffering from type 2 diabetes mellitus (DM) has been observed in the United States and most of the Western countries over the last decade [1,2]. Diabetes is associated with a two- to fourfold higher risk for myocardial infarction and death [3]. The higher mortality rate observed in patients with DM cannot only be explained by a higher incidence of other risk factors for coronary artery disease such as smoking, hypertension, and hypercholesterolemia [3], with an incidence of macrovascular complications twice that of microvascular disease [4]. On the other hand, many studies of patients with coronary artery disease, including a high percentage of DM patients, have shown improved outcome with optimal medical therapy [5–11]. Taken together, these studies underline the importance of DM as a major risk factor for coronary artery disease and the potential for therapeutic interventions in these patients.

However, previous studies have provided controversial results regarding the association between the severity of coronary artery disease and the presence of DM [12–15]. Therefore, the aim of the present study was to assess the prevalence and severity of coronary artery disease in the largest cohort of diabetic patients yet studied in comparison with nondiabetic patients, consecutively referred to our center between 1990 and 2000. Additionally, we proposed that diabetic patients might have an impaired left ventricular ejection fraction as compared to nondiabetics as an important reason for their higher mortality rate beyond the risk factors for coronary artery disease.

1Division of Cardiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
2Division of Cardiology, University Hospital Basel, Basel, Switzerland
3Department of Internal Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
4Center for Geriatric Medicine and Rehabilitation Bürgerspital, St. Gallen, Switzerland

*Correspondence to: Dr. Peter Ammann, Department of Internal Medicine, Division of Cardiology, Kantonsspital St. Gallen, CH-9007 St. Gallen, Switzerland. E-mail: peter.ammann@kssg.ch

Received 18 September 2003; Revision accepted 2 March 2004
DOI 10.1002/ccd.20135
Published online in Wiley InterScience (www.interscience.wiley.com).
MATERIALS AND METHODS
Study Population and Technical Procedures
Between January 1990 and December 1999, data from a total of 6,234 patients were collected with a computer-assisted registry of all patients referred for coronary angiography to our hospital. Coronary angiography was performed by nine trained cardiologists in all patients using right and/or left Judkins angiographic procedures. Left ventricular angiograms were performed in a subset of 4,767 (76.5%) patients in the right anterior oblique projection. In the remaining patients, angiograms were not done due to unstable clinical conditions such as acute coronary syndrome. All patients provided written informed consent for coronary angiographies and the local ethics committee approved the analysis of registry data.

Quantitative Coronary Study
Coronary anatomy was assessed by at least two senior cardiologists using a simplified scoring system derived from Dortimeter et al. [16]. Nine coronary segments were analyzed: the left main artery, four segments of the left descending artery (proximal, middle, distal segment, and side branches), two segments of the circumflex artery, and two segments of the right coronary artery. Relevant coronary artery stenosis was defined as stenosis > 50%. In addition, a more sophisticated scoring system was used to assess the atherosclerotic burden of each individual patient as described previously [14,17]: each of the nine segments was graded as follows: grade 0, angiographically normal segment; grade 1, < 50% stenosis; grade 2, 50–75% stenosis; grade 3, 75–99% stenosis; and grade 4, occlusion. Three scores were used to describe coronary atherosclerosis. The coronary score was defined by the number of coronary arteries exhibiting a stenosis greater than 75% (grades 3 and 4). Stenosis of the left main coronary artery > 50% was considered a two-vessel disease. The extent score was defined as the number of segments exhibiting stenoses greater > 50% (grade 2) adjusted to the nine-segment coronary model. The atherosclerotic score was calculated as the average severity of all analyzable segments. Left ventricular function was assessed using computerized calculations of angiographic data. According to the left ventricular ejection fraction, four groups of patients were identified: patients with normal ejection fraction (> 55%), patients with slightly impaired ejection fraction (41–55%), patients with moderately impaired left ventricular ejection fraction (30–40%), and patients with severely impaired ejection fraction (< 30%).

Assessment of Risk Factors
Clinical diagnosis of type 2 diabetes was established by reviewing the medical records of all patients. Body mass index (BMI), defined as body weight in kg divided by the square of height in m, was used as a measure of central obesity. Hypercholesterolemia was diagnosed if fasting blood samples of total cholesterol were above 200 mg/dl (5.0 mmol/L); hypertension was defined as repeated blood pressure measurements above 140/90 mm Hg.

Statistical Analyses
All data are expressed as mean ± standard deviation or median with 25th and 75th percentile and as percentages or frequencies as appropriate. The Fisher’s exact test was used to compare categorical data, number of vessels involved, and gender differences in diabetic and nondiabetic patients (Tables I and II, Fig. 1). Mann-Whitney statistics were used to compare coronary, extent, and atherosclerotic scores, left ventricular ejection fraction, as well as for calculation of continuous data in diabetic and nondiabetic patients (Tables I and III, Fig. 2).

Ordinal multivariate regression analysis was used to test independence of risk factors for the coronary artery disease (CAD) scores in multivariate analysis. Ordinal regression was used instead of linear regression because the number of categories and differences between the categories were not equivalent throughout the whole range of the CAD scores. Multivariate logistic regression analysis was used to calculate the impact of different risk factors and angiographic findings on impaired left ventricular ejection fraction (Table V). A two-tailed P of < 0.05 was considered statistically significant. A commercially available statistical program was used for analysis (SPSS 11.0 for Windows).
RESULTS

Baseline Patient Data and Frequencies of Risk Factors

Baseline clinical data of the study population are presented in Table I. Six hundred forty-one (10.3%) of the 6,234 patients were diabetic. Patients with diabetes were older, had a higher body mass index, and were more frequently hypertensive, but smoked less often. Neither the presence of clinical symptoms prior to coronary angiography nor the history of a prior myocardial infarction differed between patients with or without diabetes.

Coronary Anatomy

Results of coronary anatomy summarized by sex and coronary stenoses > 50% are presented in Figure 1. Independent of sex, diabetic patients tended to have more often two-vessel (DM 24.5% vs. no DM 22.4%; \(P = 0.09 \)) and significantly more often three-vessel disease (DM 44.7% vs. no DM 25.4%; \(P = 0.002 \)). In contrast, one-vessel disease was more frequent in patients without diabetes (no DM 24.6% vs. DM 17.1%; \(P = 0.02 \)). In the angiographic subgroups (zero-vessel, one-vessel, two-vessel, and three-vessel disease), we found no gender differences between diabetic and nondiabetic patients (Fig. 1).

Distribution of segments with stenoses > 50% in the left anterior descending artery (LAD), the circumflex (RCx), and right coronary artery (RCA) is presented in Table II. Male patients with diabetes presented significantly more often with > 50% stenoses in the LAD as compared to patients without diabetes, whereas in women, no significant difference could be demonstrated. Furthermore, men had significantly higher rates of RCx stenosis. A similar trend was seen regarding RCA stenoses; however, the difference failed to reach statistical significance.

TABLE II. Percentages of Segments With Stenoses > 50% in Patients With Type 2 Diabetes Compared to Patients Without Diabetes in Respect to the Coronary Artery Anatomy

<table>
<thead>
<tr>
<th>Stenoses > 50%</th>
<th>Diabetes (n = 641)</th>
<th>No diabetes (n = 5,593)</th>
<th>(P) between male, female, and overall*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female (n = 168)</td>
<td>Male (n = 473)</td>
<td>Overall</td>
</tr>
<tr>
<td></td>
<td>Female (n = 1,326)</td>
<td>Male (n = 4,267)</td>
<td>Overall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female Male Overall</td>
</tr>
<tr>
<td>LAD</td>
<td></td>
<td></td>
<td>Female Male Overall</td>
</tr>
<tr>
<td>Proximal %</td>
<td>11.8</td>
<td>39.6</td>
<td>51.4</td>
</tr>
<tr>
<td>Middle %</td>
<td>9.0</td>
<td>24.1</td>
<td>33.1</td>
</tr>
<tr>
<td>Distal %</td>
<td>3.0</td>
<td>10.9</td>
<td>13.9</td>
</tr>
<tr>
<td>Side branches%</td>
<td>9.2</td>
<td>30.1</td>
<td>39.3</td>
</tr>
<tr>
<td>RCx</td>
<td></td>
<td></td>
<td>Female Male Overall</td>
</tr>
<tr>
<td>Main branch %</td>
<td>9.5</td>
<td>36.6</td>
<td>46.1</td>
</tr>
<tr>
<td>Side branches %</td>
<td>9.2</td>
<td>30.7</td>
<td>39.9</td>
</tr>
<tr>
<td>RCA</td>
<td></td>
<td></td>
<td>Female Male Overall</td>
</tr>
<tr>
<td>Main branch %</td>
<td>12.5</td>
<td>43.3</td>
<td>55.8</td>
</tr>
<tr>
<td>Side branches %</td>
<td>5.0</td>
<td>22.9</td>
<td>27.9</td>
</tr>
</tbody>
</table>

* \(P \) values compare the distribution of coronary artery stenoses in each vessel between diabetic and nondiabetic patients overall and in each gender separately.
age, gender, and other cardiovascular risk factors, these differences remained statistically significant (Table IV). In fact, the effect of diabetes on all the scores was not significantly influenced by the covariates.

Left Ventricular Ejection Fraction

Diabetic patients referred to coronary angiography had a significantly reduced left ventricular ejection fraction as compared to patients without diabetes (58.4% ± 15.2 vs. 63.9% ± 13.2; \(P < 0.0001 \)). Dividing patients into different risk groups of sudden cardiac death according to the studies of implantable defibrillators in coronary artery disease [5,6], we found a significantly impaired left ventricular ejection fraction in diabetic compared to nondiabetic patients (\(P = 0.009 \); Fig. 2). Additionally, the presence of diabetes mellitus was the second most independent risk factor for decreased left ventricular ejection fraction (OR = 2.19; CI = 1.75–2.75; \(P < 0.0001 \)) after myocardial infarction (OR = 3.68; CI = 3.06–4.42; \(P < 0.0001 \)) in multivariate analysis (Table V). No gender differences could be observed in left ventricular ejection fraction between patients with and without diabetes (data not presented).

DISCUSSION

To our knowledge, this is the largest angiographic study that systematically compared left ventricular ejection fraction and coronary artery anatomy in more than 6,000 patients with and without diabetes. The present study shows that, after myocardial infarction, the presence of diabetes itself is the strongest independent risk factor for left ventricular dysfunction. Additionally, we found an increased rate of advanced atherosclerosis in patients with DM, independent of age, sex, and other cardiovascular risk factors.
such as hypercholesterolemia, hypertension, positive family history, and smoking. Patients with diabetes presented with a higher percentage of two- and three-vessel disease defined as coronary artery stenoses > 50% when compared to nondiabetics. Interestingly, in diabetic patients, atherosclerotic burden and severity scores were considerably less different between sexes when compared to patients without diabetes. This finding indicates that the protective effects of the development of atherogenesis of female sex are considerably reduced by the presence of diabetes. Still, male diabetics demonstrated more frequently peripheral coronary artery disease, while these differences could not be demonstrated in women. Taken together, our study demonstrates the paramount importance of DM as a risk factor for development and progression of coronary artery disease.

Multifactorial analyses of several prospective population studies have shown that the high incidence of coronary artery disease in DM patients cannot be explained by a higher incidence of other known risk factors as compared to the general population [18,19]. Our findings indicate that the severity of coronary artery disease is also notably influenced by the presence of DM, irrespective of other cardiovascular risk factors, age, and gender. Even after adjustment for these factors, DM was significantly associated with a more severe atherosclerotic burden as compared to patients without DM. However, there is some controversy in this regard in the literature. Whereas Ledru et al. [14] found similar results as in our registry, there are other reports that could not demonstrate a significant difference in the severity of coronary artery disease between diabetic patients and patients without diabetes [15,20,21]. The much smaller number of patients investigated compared to the present study may explain this discrepancy. Our study is the first that used established scores of the atherosclerotic burden determined by angiography in a large study population. The present findings of more severe coronary artery disease with higher atherosclerotic scores on angiography in patients with diabetes are confirmed in two recently published investigations by Ledru et al. [14] and Natali et al. [22], as well as two epidemiological studies [23,24] that also found a more severe and diffuse coronary atherosclerosis in diabetic patients. The higher rates of diffuse disease found in these studies is in line with the higher frequency of three-vessel disease and the presence of peripheral coronary artery disease in our study population. In contrast to the study of Natali et al. [22], we were not able to detect a sex-specific pattern in coronary atherosclerosis in diabetic patients. The most likely explanation for this difference is the much higher number of diabetic patients investigated in the present study. This is supported by a larger angiographic study from Melidonis et al. [25], who also found no sex differences in diabetic patients concerning coronary artery anatomy.

Our finding of such a remarkable amount of left ventricular dysfunction in patients with diabetes is astonishing. The significantly higher rate of coronary artery disease in diabetic patients suggests that decreased left ventricular ejection fraction in diabetics may be due to more severe coronary artery disease. The fact that myocardial infarction was the strongest predictor for left ventricular dysfunction in multivariate analysis and the results of a large autopsy study [20], which found more myocardial lesions in diabetic as compared to matched nondiabetic patients, support this hypothesis. However, beyond myocardial infarction, the presence of diabetes alone was the second most important independent risk factor for decreased left ventricular ejection fraction. This suggests that diabetes itself leads to left ventricular dysfunction. Decreased left ventricular ejection fraction has also been shown in a small group of patients with insulin-dependent diabetes mellitus without coronary artery disease, and an impaired cardiac sympathetic innervation associated with a defective blunted recruitment of myocardial contractility leading to left ventricular dysfunction has been postulated [26]. Microvascular disease and the significantly higher presence of hypertension in diabetics as compared to nondiabetic patients may add to this condition. Whether poor control of blood sugar and associated glycosylation of cardiac myocytes add an additional burden is currently underrated [27]. The overproportionally high percentage of DM patients (33%) with severely impaired left ventricular ejection fraction included to the recently published trials of implantable cardioverter and defibrillators [5,6] as compared to the routine prevalence of about 10% of diabetic patients referred to coronary angiography (10.3% in our hospital) supports our data of a higher prevalence of left ventricular dysfunction in patients with diabetes admitted for elective coronary angiography. This suggests that diabetes is an important risk factor not only for the presence of coronary artery disease, but also for left ventricular dysfunction with a poor outcome by yet unknown mechanisms. Our find-

TABLE V. Multivariate Logistic Regression Analysis of Different Risk Factors and Angiographic Findings Associated With Impaired Left Ventricular Ejection Fraction (< 50%)

<table>
<thead>
<tr>
<th>Risk factor or angiographic finding</th>
<th>OR (95% CI)</th>
<th>Wald</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of myocardial infarction</td>
<td>3.68 (3.06–4.42)</td>
<td>193.4</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2.19 (1.75–2.75)</td>
<td>46</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>BMI (per kg/m²)</td>
<td>0.94 (0.92–0.96)</td>
<td>24.7</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>History of smoking</td>
<td>1.26 (1.07–1.49)</td>
<td>7.5</td>
<td>0.006</td>
</tr>
<tr>
<td>Atherosclerotic score</td>
<td>1.12 (1.00–1.25)</td>
<td>3.6</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*Wald denotes the importance of each variable as predictor of the risk factors for left ventricular dysfunction. Predictors not statistically significant in multivariate analysis are not depicted.
Coronary Anatomy and LVEF 437

...ings are supported by other investigators who found that diabetes and arterial hypertension have adverse effects on left ventricular geometry and function, and that the combination of hypertension and diabetes resulted in the greatest degree of left ventricular hypertrophy and myocardial dysfunction [28]. However, coronary angiographies were not routinely performed in this study. In this context, it is noteworthy that 50% of patients with left ventricular dysfunction are asymptomatic [29]. Therefore, especially diabetic patients should be screened for left ventricular dysfunction even in the absence of clinical symptoms.

Previous studies using myocardial scintigraphy, treadmill stress test, or 24-hr heart rate variability have demonstrated a higher percentage of silent angina in patients with diabetes [30–32]. Autonomic impairment and abnormalities in pain perception have been advocated for it in diabetics. Interestingly, we could not demonstrate differences between diabetic and non-diabetic patients concerning their clinical symptoms when referred for coronary angiography, although coronary artery disease was significantly more severe in diabetics. This supports theories of an abnormal pain perception in patients with DM. It is tempting to speculate if abnormal pain perception was the main reason for the significantly higher age of diabetic as compared to non-diabetic patients referred for coronary angiography. However, due to the retrospective design of this study, a negative referral bias for coronary angiography in diabetic patients due to physicians’ decisions cannot be excluded.

Study Limitations

In our study population, diagnosis of type 2 diabetes mellitus was based on information of patients, medical records, and blood glucose measurements in the majority of patients prior to coronary angiography. Information on the type of antidiabetic therapy and other cardiac medication was not systematically collected in our registry. Information on the duration of the disease, the glycemic control, other end-organ damage, or systematical follow-up investigations after coronary angiography is lacking.

In addition, coronary anatomy was assessed by angiography and not by intravascular ultrasound. Until now, there are only few studies giving insight into the role of diabetes on vascular remodeling and plaque accumulation in stenotic and nonstenotic coronary vessels [33,34]. In these studies, limited vessel remodeling could be demonstrated, but seemed to be confined to patients with type 1 diabetes. However, patients with type 2 diabetes showed a very similar plaque burden and vascular remodeling as compared to patients without diabetes at least in obstructive (> 50% stenosis) lesions [33]. Therefore, coronary angiography seems to be an adequate method to detect coronary artery disease and atherosclerotic burden in patients with type 2 diabetes.

Patients with DM have significantly more severe coronary artery disease even after adjustment for age and other coronary atherosclerotic risk factors. In particular, DM is the most important risk factor for the severity of the disease. Furthermore, diabetic patients more often show left ventricular dysfunction as compared to nondiabetics, which is related to more severe and more diffuse atherosclerotic disease and to the presence of diabetes itself. Thus, diabetic patients with and without coronary artery disease may need more aggressive diagnostic and therapeutic efforts, irrespective of other cardiac risk factors and gender. Since the more diffuse nature of coronary disease in diabetic patients may make revascularization difficult or even impossible, slowing down progression of the disease by means of secondary prevention is particularly important in these high-risk patients. Future prospective studies are warranted to assess the long-term course of left ventricular function in newly diagnosed diabetics in relation to several strategies to modify additional risk factors.

REFERENCES

2. Diamond J. The double puzzle of diabetes: why is the prevalence of type 2 diabetes mellitus now exploding in most populations, but not in Europeans? the genetic and evolutionary consequences of geographic differences in food history may provide the answer. Nature 2003;423:599–602.

